
 Getting Started with NSCC Supercomputing on ASPIRE 1

1

Getting Started with

NSCC Supercomputing

on ASPIRE 1

Updated: 16 December 2020

 Getting Started with NSCC Supercomputing on ASPIRE 1

2

Table of Contents

2.1 Enroll as an NSCC User .. 4

 Go to NSCC User Login Page .. 4

 Login with Your Institution’s Account .. 5

 Set Your NSCC Account Password .. 7

2.2 Connect to NSCC Server using VPN .. 9

 Setup and Use NSCC VPN ... 9

2.3 Setup and Use SSH Tools .. 11

 Connect to NSCC ASPIRE 1.. 15

3.1 Module Package .. 16

3.2 Introduction to MPI ... 17

3.3 Exercise 1: First MPI Program .. 18

 Writing your First MPI Program – mpi_hello_world.c 18

 Compile and Run your First MPI Program .. 20

 Understanding the Output ... 20

 Takeaways .. 21

4.1 NSCC Job Scheduler - PBS Pro .. 22

 PBS Queue .. 22

 Submitting Jobs to PBS Queue ... 23

4.2 Transferring files between PBS Compute Manager and Local Machine 23

4.3 Exercise 2: Interactive Batch MPI Program .. 25

 Write your Interactive Batch MPI Program – mpi_prime.c 25

 Run your MPI Prime Program .. 29

 Understanding the Output ... 30

 Takeaways .. 30

5.1 Inputs and Outputs ... 31

5.2 Running jobs in your directory .. 31

5.3 Exercise 3 (Part 1): Shell Script for Automated Batch Job 31

 Write a Batch Script – batch_hello_world.pbs ... 32

 Understanding your Batch Script – batch_hello_world.pbs 32

 Submit and monitor your Batch Job ... 33

 Check your Output.. 33

5.4 Exercise 3 (Part 2): Shell Script for Automated Batch Job 33

 Abnormal Job Termination ... 33

 Write a Batch Script – batch_prime.pbs ... 34

 Understanding your Batch Script – batch_prime.pbs 35

 Check your Output.. 36

 Takeaways .. 36

 Getting Started with NSCC Supercomputing on ASPIRE 1

3

 Introduction

The National Supercomputing Centre (NSCC) Singapore was established in 2015 and manages

Singapore’s first national petascale facility with high-performance computing (HPC) resources

to support the science and engineering computing needs for academic, research and industry

communities.

ASPIRE 1, an NSCC HPC system, provides total compute capacity of 1 petaflop [1]. Each

Fujitsu PRIMERGY compute server node consisted of dual Intel E5-2690v3 (2.60GHz, 12

cores) processors with 128GB of memory. In total, ASPIRE 1 consists of 31,392 cores and 229

terabytes of memory. Some compute nodes have attached NVIDIA Tesla K40 GPU accelerator.

ASPIRE 1 uses the latest EDR interconnect technology for high-throughput and low-latency

inter-node communication. The storage of ASPIRE 1 consists of 3 tiers with I/O bandwidth up

to 500 GB/s. The total storage of ASPIRE 1 is 14 PByte. The Operating System (OS) on

ASPIRE 1 is Linux [2].

Figure 1: Compute Node Architecture [3]

This starter guide provides a quick introduction for users to run their first program on ASPIRE

1. This guide is organized into five sections. Section 1 introduces NSCC supercomputing

resources and the objective of this lab manual. Section 2 explains the steps on enrolling as an

NSCC user and setting up the login environment. Section 3 discusses how to run interactive

MPI parallel programs. Setting up and running of batch MPI programs interactively are shown

in section 4 and finally, section 5 introduces shell scripting to automate the running of multiple

batch jobs.

 Getting Started with NSCC Supercomputing on ASPIRE 1

4

 Access to ASPIRE 1

The objective of this section is to learn how to access the NSCC cluster from your computer

[4]. First, we will show the steps to register as an NSCC user and get the credentials for

accessing the NSCC ASPIRE 1 cluster. Second, we will show you how to connect to NSCC

VPN (only for non-institution users) and access NSCC cluster for Linux/MacOS/Windows user

via SSH [5]. VPN stands for Virtual Private Network, which provides access to a private

network over the public network. SSH, known as Secure Shell, provides a secure tunnel over

an unsecured network.

2.1 Enroll as an NSCC User

 Go to NSCC User Login Page

In this step, we will guide you on how to register as an NSCC user [6].

To enroll as an NSCC user, log in using your institution’s account at https://user.nscc.sg/saml/

and click ‘Login’. If you are not from the institutions listed in the page, please email

contact@nscc.sg to obtain your account [7].

Figure 2.1: NSCC User Login

https://user.nscc.sg/saml/
mailto:contact@nscc.sg

 Getting Started with NSCC Supercomputing on ASPIRE 1

5

 Login with Your Institution’s Account

Choose your institution and log in using your institution’s account.

Figure 2.1.1: NSCC User Login (Choose Your Institution)

NUS:

Figure 2.1.2: NSCC User Login (NUS)

 Getting Started with NSCC Supercomputing on ASPIRE 1

6

NTU:

Figure 2.1.3: NSCC User Login (NTU)

SUTD:

Figure 2.1.4: NSCC User Login (SUTD)

 Getting Started with NSCC Supercomputing on ASPIRE 1

7

 Set Your NSCC Account Password

After logging in to your institution, you will be redirected to the NSCC page with your NSCC

account. On the first login, you will have to set a new password for your account.

Click ‘Set/Reset Password’ to set the new password for your NSCC account.

Figure 2.2.1: NSCC Account Password Reset

Ensure that your password is strong enough and meet the following requirements:

 Minimum 8 characters

 Mixture of upper and lower-case characters

 Must contain numbers (0-9)

 Must include at least one special char: !@#$%^&*+=?><

Your NSCC account and password also works as your credential for accessing ASPIRE 1.

 Getting Started with NSCC Supercomputing on ASPIRE 1

8

Once ready, you may click the Set Password button.

Figure 2.2.2: NSCC Account Password Reset

 Getting Started with NSCC Supercomputing on ASPIRE 1

9

2.2 Connect to NSCC Server using VPN

 Setup and Use NSCC VPN

In this step, we will show you how to connect to the NSCC cluster.

NSCC server is only accessible from a secured network which includes institutions’ network

or via NSCC VPN. To use NSCC server, please connect to the VPN provided by your

institution or directly connect from the network within your institution.

If you are not from any institutions listed in the login page, you should use NSCC VPN [6].

i. To use NSCC VPN, go to https://vpn.nscc.sg/. Enter your username and password to

log in.

Figure 2.3.1: NSCC VPN

ii. Upon logging in, you will see the following page:

Figure 2.3.2: OTP Verification

https://vpn.nscc.sg/

 Getting Started with NSCC Supercomputing on ASPIRE 1

10

iii. Download and install “Sophos Authenticator” on your mobile phone from Apple Store

(iOS) or Google Play (Android). Then scan the QR code from the page above.

iv. Once you have logged in successfully, go to Remote Access and download the

corresponding version according to your Operating System.

Figure 2.3.3: SSL VPN Download

v. After downloading, install the Sophos SSL VPN. Once the installation is completed,

start the client and log in using your username and password.

Figure 2.3.4: Sophos SSL VPN

vi. You will be able to access the NSCC cluster via NSCC VPN now.

 Getting Started with NSCC Supercomputing on ASPIRE 1

11

2.3 Setup and Use SSH Tools

In this step, we show you how to use SSH tools to connect to NSCC cluster.

SSH, known as Secure Shell, is a network protocol that gives users a secure way to access a

computer over an unsecured network [5]. SSH is widely used by HPC users for managing

systems and applications remotely, enabling them to log in to another computer over a network,

execute commands and move files from one computer to another.

For users who prefer using the terminal: use terminal (Linux/MacOS) or PowerShell

(Windows), log in via SSH on port 22. Your login server is dependent on your institution. Your

account credential is your NSCC ID with NSCC password.

If you are logging in from Your Hostname is Port

NUS nus.nscc.sg 22

NTU ntu.nscc.sg 22

A*STAR astar.nscc.sg 22

SUTD sutd.nscc.sg 22

Everywhere else (via NSCC VPN) aspire.nscc.sg 22

Figure 2.3.4: SSH Login Hosts

The login command for SSH is:

ssh YOUR_NSCC_ID@NSCC_HOSTNAME

Here, YOUR_NSCC_ID is your NSCC account ID. Refer to the table above for your

NSCC_HOSTNAME based on the institution you are from.

For users who prefer SSH client:

i. Download and install an SSH client, eg. Putty, XShell. Here we take XShell as an

example.

ii. XShell can be downloaded from https://www.netsarang.com/en/all-downloads/

Figure 2.4.1: XShell Download

https://www.netsarang.com/en/all-downloads/

 Getting Started with NSCC Supercomputing on ASPIRE 1

12

iii. For research purpose, please choose free licensing.

Figure 2.4.2: XShell Download

iv. Enter your name and e-mail. Check your e-mail for downloading and installing. Here

we download both XShell and XFTP. XShell is used as an SSH tool to connect to

ASPIRE 1 server. XFTP helps us to upload or download files from the remote server.

Figure 2.4.3: XShell Download

 Getting Started with NSCC Supercomputing on ASPIRE 1

13

v. After installing, open XShell and set up your login server properties. Click ‘New’ to

create a new profile for ASPIRE 1.

Figure 2.4.4: Creating a New Profile for XShell

vi. Proceed to connect to the NSCC cluster using the host you are associated with. Refer

to Figure 2.3.4 for the SSH login host.

Figure 2.4.5: Connecting to NSCC Cluster on XShell

 Getting Started with NSCC Supercomputing on ASPIRE 1

14

vii. Set up your login authentication. Your account credential is your NSCC ID and

password.

Figure 2.4.6: Connecting to NSCC Cluster on XShell

 Getting Started with NSCC Supercomputing on ASPIRE 1

15

 Connect to NSCC ASPIRE 1

Connect to NSCC ASPIRE 1. You should be able to see the following welcome message

(Figure 2.5).

Welcome to ASPIRE1 #

--#

- To list the available environment modules, do "module avail" #

- To purge the loaded modules, do "module purge" #

- To see list of all jobs in the queues, run "gstat" #

- The "myquota" command is available to view your quota limits for \ #

"home" and "scratch" #

Usage in 7 days to 2020/12/08:

 Number of jobs on CPU nodes: 0

 Core hours on CPU nodes: 0.0

 Number of jobs on GPU nodes: 0

 Core hours on GPU nodes: 0.0

Usage in month to 2020/11/30:

 Number of jobs on CPU nodes: 6

 Core hours on CPU nodes: 10.6

 Number of jobs on GPU nodes: 1

 Core hours on GPU nodes: 2.6

Usage since system start to 2020/11/30:

 Number of jobs on CPU nodes: 100

 Core hours on CPU nodes: 227.8

 Number of jobs on GPU nodes: 4

 Core hours on GPU nodes: 23.6

Project status as of 2020/12/10 00:14

ASPIRE1 Core hours remaining for project: 1001

 Total Grant: 10000.0

 Total Used: 3000.0

 Total Pending: 0.0

 Total Avail: 7000.0

AI GPU hours remaining for project: 1001

 Total Grant: 1000.0

 Total Used: 791.8

 Total Pending: 0.0

 Total Avail: 208.1

Purging policy is implemented on scratch directory
and files which have not been accessed within the last 30 days will be

purged automatically. For more info visit https://help.nscc.sg -> FAQs
hpcuser@nscc04 ~ $

Figure 2.5: NSCC ASPIRE 1

 Getting Started with NSCC Supercomputing on ASPIRE 1

16

 Run Interactive MPI Parallel Programs

The objective of this section is to run your first program on ASPIRE 1. We will first understand

the organization of software on the cluster. Next, we shall cover a brief MPI introduction to

facilitate the understanding of the MPI programs that we will be writing subsequently. Lastly,

we will walk you through in writing your first MPI program.

3.1 Module Package

The NSCC cluster is running with the Linux operating system [8]. Unlike computers used by

one or a few users, HPC system is shared by many users. Different users use different software,

but also share some software like compilers and computing engines. To save users the hassle

of downloading software, some of the common software have been preinstalled. These

software are managed through modules. [9]. Modules enable the user to pick and choose what

software or version of the software they wish to use. When there are several versions available

of the same software package, the user can select which version to use with the load command.

To display all available software installed on the cluster, at the system prompt enter:

module avail

Here is the sample output of module avail:

hpcuser@nscc04 ~ $ module avail

----------------------- /app/modules/dev-gnu ------------------------------

autoconf/2.69 gcc/4.9.3(default) gmp/6.1.2

leveldb mkl/gcc protobuf/2.6.1

autogen/5.18.7 gcc/5.1.0 gsl/2.1

libgd/2.1.1 mpc/1.0.3 readline/6.3

automake/1.15 gdb/7.10 guile/2.0.11

libiberty/4.9.3 mpfr/3.1.4 snappy/1.1.3

binutils/2.26 gflags

hdf5/1.8.16/gcc493/serial libtool/2.4.6 mpiP/3.4.1/gcc493

yasm/1.3.0

boost/1.59.0/gcc493/serial glog/0.3.3 isl/0.14

libunistring/0.9.5 openmpi/gcc493/1.10.2 zlib/1.2.8
dejagnu/1.5.3 gmp/6.1.0 isl/0.22.1

lmdb pcre/8.39

---------------------- /app/modules/dev-gpu -------------------------------

caffe cuda/9.2 cuda91/profiler/9.1.85

openmpi/gcc493_gpu/3.0.1 tensorflow/1.4

caffe-nv cuda80/toolkit/8.0.44 cuda91/toolkit/9.1.85

tensorflow/1.0 tensorflow/1.4-cpu

cuda/10.1 cuda91/blas/9.1.85 digits

tensorflow/1.0-cpu tensorflow/cpu

cuda/7.0 cuda91/fft/9.1.85 opencv/2.4.3

tensorflow/1.0+keras tensorflow/gpu(default)

cuda/7.5 cuda91/nsight/9.1.85

openmpi/gcc493_gpu/1.10.4 tensorflow/1.0-python3 torch/2016-08-02
Figure 3.1: module avail Command on NSCC ASPIRE 1

Figure 3.1 shows several software preinstalled on the cluster. The software highlighted in red

is OpenMPI, which we will be using in the next few steps.

 Getting Started with NSCC Supercomputing on ASPIRE 1

17

3.2 Introduction to MPI

MPI, known as Message Passing Interface, is a widely used parallel computing library [10].

Unlike normal tasks running with a single process, many processes are working together to

perform a task in parallel computing [11]. To enable processes to work together, we need a

mechanism such as MPI to help exchange information between processes.

The key concept in MPI is the notion of a communicator. A communicator defines a group of

processes that communicates with one another. In this group of processes, each process is

assigned a unique ID called rank, and they explicitly communicate with one another by the

ranks.

The message passing is achieved by sending and receiving operations among processes. A

process may send a message to another process by providing the rank of the process and a

unique tag to identify the message. The receiver can post a receive for a message with a given

tag, and handle the data accordingly. This kind of communication is known as point-to-point

communication.

Another kind of communication is called collective communication, where processes

communicate with everyone else. For example, when a master process needs to broadcast

information for all its worker processes. It is not efficient if we make each worker process do

a point-to-point communication with a master process.

A typical MPI program can be structured as follows:

Figure 3.2: MPI Program Structure [10]

 Getting Started with NSCC Supercomputing on ASPIRE 1

18

3.3 Exercise 1: First MPI Program

In this exercise, we will apply what we have learnt about MPI to writing a basic MPI program

so that you have a better understanding on how an MPI program is executed, as well as the

spawning of processes facilitated by MPI.

We will first ensure that the NSCC Cluster has the MPI Module required to run our program.

Then we will proceed to write our MPI program with the necessary commands needed to set

up the MPI execution environment. The functions of each command used will also be explained.

Finally, you can compile, run your program and observe the results.

 Writing your First MPI Program – mpi_hello_world.c

The program, mpi_hello_world.c is a basic Hello World program that prints the processor name

the program is executed on, as well as the rank of each process in the communicator.

Step 1: Load MPI Module to NSCC ASPIRE 1 Cluster

By using the module avail command, we can see the different MPI module available on the

cluster.

MPI is a standard for message passing interface. There are different implementations available.

In this guide, we will use OpenMPI with the gcc compiler.

Load the OpenMPI module via the following command:

module load openmpi/gcc493/1.10.2

To check whether your module is successfully loaded, use the command:

module list

hpcuser@nscc04 ~ $ module load openmpi/gcc493/1.10.2

hpcuser@nscc04 ~ $ module list

Currently Loaded Modulefiles:

 1) binutils/2.26 3) mpfr/3.1.4 5) isl/0.14 7) openmpi/gcc493/1.10.2

 2) gmp/6.1.0 4) mpc/1.0.3 6) gcc/4.9.3
Figure 3.3: List of Modules Loaded

Figure 3.3 shows that other modules have been loaded. These are modules that OpenMPI

needed as dependencies, which we do not need to deal with when loading modules.

Step 2: Creating a New File

Open a text editor and create a file called mpi_hello_world.c [12]. Common editors on Linux

include emacs, vi, joe, etc. For example:

vi mpi_hello_world.c

 Getting Started with NSCC Supercomputing on ASPIRE 1

19

This creates and opens a file named mpi_hello_world.c under the current path.

Press ‘i’ to enter the editing mode in vi.

Step 3: Include Header Files

//

// Exercise 1 – mpi_hello_world.c

//

#include <mpi.h>

#include <stdio.h>

In every MPI program, we will start with the MPI header file #include <mpi.h>.

Step 4: Setting the MPI Execution Environment

int main(int argc, char** argv) {

 // Initialize the MPI environment

 MPI_Init(NULL, NULL);

 // Get the number of processes

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int world_rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 int name_len;

 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message

 printf("Hello world from processor %s, rank %d out of %d processors\n",

 processor_name, world_rank, world_size);

 // Finalize the MPI environment.

 MPI_Finalize();

}

Next, MPI_Init() constructs all of MPI’s global and internal variables. For example, a

communicator has formed around all processes spawned, and unique ranks are assigned to each

process.

MPI_Comm_size() returns the size of a communicator and MPI_COMM_WORLD encloses

all of the processes in the job. In other words, this call returns the number of processes that

were requested for the job.

 Getting Started with NSCC Supercomputing on ASPIRE 1

20

MPI_Comm_rank() returns the rank of a process in a communicator. Each process inside a

communicator is assigned an incremental rank starting from zero. The ranks of the processes

are primarily used for identification purposes when sending and receiving messages.

MPI_Get_processor_name() obtains the actual name of the processor on which the process is

executing.

Finally, MPI_Finalize() is used to clean up the MPI environment and no more MPI calls can

be made after this command.

To save your file and exit vi, use ‘Esc’ to exit from editing mode, followed by:

:wq

Here, ‘w’ means written and ‘q’ means quit.

 Compile and Run your First MPI Program

Like any other programs, you need to compile your MPI program before running it.

mpicc -o mpi_hello_world mpi_hello_world.c

You should see the executable mpi_hello_world after compiling.

hpcuser@nscc04 hello $ mpicc -o mpi_hello_world mpi_hello_world.c
hpcuser@nscc04 hello $ ls
mpi_hello_world mpi_hello_world.c

Figure 3.4: Compiling MPI Program

Do note that MPI programs cannot be compiled using the ‘gcc’ command alone as there are a

few other steps required which are beyond the scope of this guide. Therefore mpicc is a shortcut

to all the steps required for compiling MPI programs.

Run your MPI program using the following command:

mpirun -np 2 ./mpi_hello_world

-np indicates how many processes you would like to run your program with.

hpcuser@nscc04 hello $ mpirun -np 2 ./mpi_hello_world

Hello world from processor nscc04, rank 0 out of 2 processors

Hello world from processor nscc04, rank 1 out of 2 processors
Figure 3.5: Running MPI Program

 Understanding the Output

Now let’s use 10 processes instead.

mpirun -np 10 ./mpi_hello_world

This gives you an output of 10 lines (Figure 3.6).

 Getting Started with NSCC Supercomputing on ASPIRE 1

21

hpcuser@nscc04 hello $ mpirun -np 10 ./mpi_hello_world
Hello world from processor nscc04, rank 1 out of 10 processors

Hello world from processor nscc04, rank 3 out of 10 processors

Hello world from processor nscc04, rank 5 out of 10 processors

Hello world from processor nscc04, rank 7 out of 10 processors

Hello world from processor nscc04, rank 9 out of 10 processors

Hello world from processor nscc04, rank 6 out of 10 processors

Hello world from processor nscc04, rank 8 out of 10 processors

Hello world from processor nscc04, rank 0 out of 10 processors

Hello world from processor nscc04, rank 2 out of 10 processors

Hello world from processor nscc04, rank 4 out of 10 processors
Figure 3.6: Output of the Hello World Program

By indicating 10 processes, the program spawns 10 processes in the communicator that each

produces an output ‘Hello world’ along with their rank.

 Takeaways

From this exercise, you should have a better understanding of how to run an MPI program, the

various MPI commands or functions needed for execution including its rationale and its

function in the program. Most of the MPI commands or functions covered in the example need

to be present in every MPI program, and hence it is important that you understand its purpose.

Lastly, we hope that you have learnt the basics of writing an MPI program and we will build

on this knowledge in the next section.

 Getting Started with NSCC Supercomputing on ASPIRE 1

22

 Run Interactive Batch MPI Jobs

The objective of this section is to run your MPI program in batch mode interactively on a job

scheduler (PBS Pro) via submitting to the PBS queue [14]. First, we will learn how a batch job

is implemented by the queues in the cluster. Then we will learn how to transfer files between

your local machine and PBS Compute Manager, before learning how to submit your program

in batch to the PBS queue.

4.1 NSCC Job Scheduler - PBS Pro

NSCC uses PBS Pro to schedule jobs on the cluster. This scheduler provides a workload

management solution that maximizes the efficiency and utilization of high-performance

computing (HPC) resources and improves job turnaround. Several queues (PBS Queue) have

been created to satisfy the resource requirements of the various workloads which use the system.

 PBS Queue

The PBS Queue allows users to share resources on supercomputers. As such, you can run jobs

that require large amounts of different resources by submitting your jobs to the queues below,

which will be subsequently scheduled to run by PBS Pro. The table below lists the queues

available to all NSCC users. There may be special queues on the system which are not normally

available to everyone.

Queue Name Resources Available Remarks

normal

1160 Compute nodes

24 cores per server

4GB/core memory or 96 GB

per server

The queue normal is a routing

queue and does not execute any

jobs. It only routes the job to the

internal queues based on the

resource requirement

gpu

128 GPU nodes

24 Cores per server

4GB/core memory or 96 GB

memory per server

This queue is a routing queue

and does not execute any jobs.

This queue routes the jobs to the

internal queues based on

resource requirement

largemem

9 Compute nodes

24/48 cores per server

1TB/4TB/6TB memory

configurations

This is an execution queue which

can take large memory jobs

requiring more than 96GB of

memory per server

iworkq
Special queue for interactive

or visualization jobs

Jobs submitted from the Display

manager to be dispatched to this

queue

 Getting Started with NSCC Supercomputing on ASPIRE 1

23

 Submitting Jobs to PBS Queue

When Batch Jobs are submitted, they are assigned to a queue and wait for its turn to run by the

scheduler.

echo COMMAND | qsub -q normal -l select=1:ncpus=2,walltime=00:13:00

This submits a job to the normal queue, which requires 2 CPU cores and 13 minutes of

wallclock time.

$ echo sleep 10 | qsub -q normal -l select=1:ncpus=2,walltime=00:13:00

INFO: As you have not specifed whether this job as a personal or project

run,

INFO: the system will count this as a personal run by default.

INFO:

INFO: Please use -P Personal or -P <project_id> to properly account for

your job.

INFO:

INFO: Alternatively, in your job submission script please add

INFO: #PBS -P Personal or #PBS -P <project_id>

INFO: submitting job...

2123248.wlm01
Figure 4.1: Submission of Job Interactively

You will see the output as above (Figure 4.1). Use ‘ls’ command to check your directory. You

will see two files called STDIN. e<YOUR_JOB_ID> and STDIN.o<YOUR_JOB_ID>.

hpcuser@nscc04 ~ $ ls
STDIN.e2123248 STDIN.o2123248

Figure 4.2: Output and Error Files of Job

PBS recognises your job name as STDIN. In general, your job outputs and any PBS messages

can be found in the file <Job-name>.o<Job-ID>. If there are any MPI or system errors in

running the program the error messages will be found in <Job-name>.e<Job-ID>. In this case,

STDIN.o2123248 will contain your outputs while STDIN.e2123248 will contain the error

messages (if any).

4.2 Transferring files between PBS Compute Manager and Local Machine

The PBS Compute Manager is a simple web interface where users can submit jobs, monitor

jobs which are running and transfer files.

 Getting Started with NSCC Supercomputing on ASPIRE 1

24

i. You may log in to PBS Compute Manager at https://aspireweb.nscc.sg.

Figure 4.3.1: PBS Compute Manager Login Page

ii. Upon login, click on Remote Files on the bottom left.

Figure 4.3.2: PBS Compute Manager

iii. You will find the upload and download buttons in the bar.

Figure 4.3.3: PBS Compute Manager Files

https://aspireweb.nscc.sg/

 Getting Started with NSCC Supercomputing on ASPIRE 1

25

4.3 Exercise 2: Interactive Batch MPI Program

Now that you have understood how to submit jobs to the PBS queues to execute large jobs, we

will proceed to write a program that utilizes more than one node to execute. Subsequently, we

will show you how to submit the batch job interactively and request for a specific amount of

resources to execute it.

 Write your Interactive Batch MPI Program – mpi_prime.c

The program, mpi_prime.c [15], counts the number of prime between 1 and N where N starts

from 1 and increases by 2 times every iteration until the user input, and prints the time taken to

count. The program only reads an input that is a power of 2.

The counting is done across P processes, as indicated by the number of MPI process the user

has chosen. To divide the work among P processes evenly, the processor ID starts at 2 + ID

and increases by P each time.

Step 1: Include Header Files

Create a file called mpi_prime.c.

//

// Exercise 2 – mpi_prime.c

//

#include <math.h>

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

Firstly, include the MPI header file and the all necessary files required. Since we will be using

mathematical formulae, we would require <math.h>. We need <time.h> as we will be tracking

the time taken to count the number of primes. Finally, we also need <stdlib.h> for atoi()

function.

Step 2: Write Function Declarations

int main (int argc, char *argv[]);

int prime_number (int n, int id, int p);

void timestamp ();

Next, we will have 3 functions in this example. In addition to the main function,

prime_number() is used to count the number of primes, while timestamp() returns the date and

time.

 Getting Started with NSCC Supercomputing on ASPIRE 1

26

Step 3: Define all Functions

int main (int argc, char *argv[]) {

 int id, ierr, n, n_factor, n_hi, n_lo, p, primes, primes_part;

 double wtime, start, end;

 n_lo = 1;

 n_factor = 2;

 if (argc < 2) {

 fprintf(stderr, "State upper limit");

 exit(1);

 }

 n_hi = atoi(argv[1]);

 if (ceil(log2(n_hi)) != floor(log2(n_hi))) {

 fprintf(stderr, "Please enter an input that is a power of 2.");

 exit(1);

 }

 ierr = MPI_Init (&argc, &argv);

 if (ierr != 0) {

 printf ("\n");

 printf ("PRIME_MPI - Fatal error!\n");

 printf (" MPI_Init returns nonzero IERR.\n");

 exit (1);

 }

 //Get the number of processes.

 ierr = MPI_Comm_size (MPI_COMM_WORLD, &p);

 //Determine this processes's rank.

 ierr = MPI_Comm_rank (MPI_COMM_WORLD, &id);

 if (id == 0) {

 printf("Running program PRIME_MPI\n");

 printf("Start: ");

 timestamp ();

 start = MPI_Wtime();

 printf ("\n");

 printf (" This is an MPI example program to count the number of primes.\n");

 printf (" The number of logical processes is %d.\n", p);

 printf (" The input entered is %d.\n", n_hi);

 printf ("\n");

 printf (" N Prime Time(s)\n");

 printf ("\n");

 Getting Started with NSCC Supercomputing on ASPIRE 1

27

 }

 n = n_lo;

 while (n <= n_hi) {

 if (id == 0) {

 wtime = MPI_Wtime ();

 }

 ierr = MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 primes_part = prime_number (n, id, p);

 ierr = MPI_Reduce (&primes_part, &primes, 1, MPI_INT, MPI_SUM, 0,

 MPI_COMM_WORLD);

 if (id == 0) {

 wtime = MPI_Wtime () - wtime;

 printf (" %8d %9d %18f\n", n, primes, wtime);

 }

 n = n * n_factor;

 }

 //Terminate MPI.

 ierr = MPI_Finalize ();

 //Terminate.

 if (id == 0) {

 printf ("\n");

 printf ("PRIME_MPI - Master process:\n");

 printf (" Normal end of execution.\n");

 end = MPI_Wtime();

 printf ("\n");

 printf("End: ");

 timestamp ();

 printf("PRIME_MPI ran for a duration of %fs.\n", end-start);

 printf ("\n");

 }

 return 0;

}

int prime_number (int n, int id, int p) {

 int i, j, prime, total;

 total = 0;

 for (i = 2 + id; i <= n; i = i + p) {

 Getting Started with NSCC Supercomputing on ASPIRE 1

28

 prime = 1;

 for (j = 2; j < i; j++) {

 if ((i % j) == 0) {

 prime = 0;

 break;

 }

 }

 total = total + prime;

 }

 return total;

}

void timestamp() {

define TIME_SIZE 40

 static char time_buffer[TIME_SIZE];

 const struct tm *tm;

 time_t now;

 now = time (NULL);

 tm = localtime (&now);

 strftime (time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm);

 printf ("%s\n", time_buffer);

 return;

undef TIME_SIZE

}

Lastly, we will define all functions that are required for our program.

As discussed before in section 3.3.2, the basics of the MPI commands needed applies here

similarly. We will explain the new MPI commands used in this program.

MPI_Wtime() returns the elapsed time in seconds since an arbitrary time in the past.

MPI_Bcast() broadcasts a message from the process with rank root to all other processes of the

communicator.

MPI_Reduce() reduces values on all processes to a single value.

Step 4: Compile your MPI Prime Program

Compile your program:

module load openmpi

mpicc -o mpi_prime mpi_prime.c -lm

The program can also be seen in the folder.

 Getting Started with NSCC Supercomputing on ASPIRE 1

29

Step 5: Request Computation Resources

Request resources for your program:

qsub -I -q normal -l select=2:ncpus=24:mpiprocs=12 -l walltime=1:00:00 -P Personal -N

mpi_prime

This issues the PBS directives to run your MPI Prime program. In this example, it selects the

normal queue, requests for 2 server nodes with 24 CPUs and 12 MPI processes each, and with

a walltime of 1 hour. The -P directive indicates the project as a personal project and -N assigns

the name mpi_prime to it.

Once the resources have been acquired and the job is ready to run, you will see the following:

hpcuser@nscc04 prime $ qsub -I -q normal -l select=2:ncpus=24:mpiprocs=12 -

l walltime=1:00:00 -P Personal -N mpi_prime

qsub: waiting for job 2123249.wlm01 to start

qsub: job 2123249.wlm01 ready
Figure 4.4: Message for a Job Ready to Run

 Run your MPI Prime Program

Next, load your MPI module and run the program:

module load openmpi

cd $PBS_O_WORKDIR

mpirun -np 12 ./mpi_prime 1024

This runs the program with 12 processes and input of 1024.

Note: in this example, we have requested for 48 cores, but the program is only using 12. In this

case, we seem to have “wasted” 36 cores. However it is quite common to request for more

cores than MPI processes when making use of OpenMP or pthreads in very compute-intensive

mathematical applications or when a large memory footprint is required, but these issues are

beyond the scope of this guide.

 Getting Started with NSCC Supercomputing on ASPIRE 1

30

 Understanding the Output

Running program PRIME_MPI

Start: 10 December 2020 05:25:51 PM

 This is an MPI example program to count the number of primes.

 The number of logical processes is 12.

 The input entered is 1024.

 N Prime Time(s)

 1 0 0.001251

 2 1 0.000006

 4 2 0.000003

 8 4 0.000004

 16 6 0.000003

 32 11 0.000003

 64 18 0.000013

 128 31 0.000009

 256 54 0.000009

 512 97 0.000029

 1024 172 0.000363

PRIME_MPI - Master process:

 Normal end of execution.

End: 10 December 2020 05:25:52 PM

PRIME_MPI ran for a duration of 0.210847s.
Figure 4.5: Output for MPI Prime Program

Each row represents the time taken to count the number of primes (Prime) that are present

between 0 and N, up to 1024 which is our input. At the end of the program, the time taken to

run the entire program is also shown so that we can keep track of the efficiency of the job

executed.

 Takeaways

From this exercise, we hope that you have a deeper understanding of the purpose and benefits

of MPI in a program. In addition, you should have learnt how to request computation resources

for your program which will influence the speed and thus the efficiency of the execution.

With the new MPI commands that were introduced, you should be able to write your MPI

program and eventually explore more advanced MPI usage.

 Getting Started with NSCC Supercomputing on ASPIRE 1

31

 Run Automated Batch MPI Jobs

The objective of this section is to learn how to automate the submission of a batch job using a

shell script.

In this section, we will first introduce how inputs and outputs are indicated when running a

program and then ensuring your jobs are executed in your directory. Next, we will write a shell

script to submit a job to the queue. Following this, we will monitor the job progress and check

the output of the program.

At the end of this section, we will introduce another batch script with more functionalities

involving exception handling to ensure that your batch job runs smoothly.

5.1 Inputs and Outputs

In some cases, your program may be required to read in the input and redirect the output to an

output file.

mpirun -np 24 ./program_name 100 > output_file

As seen above, the input should always come after the program name, while the output file’s

name should be indicated after an arrow. When a single arrow > is used, the output will

overwrite any existing content in the output file. If you would like to redirect the output to an

existing output file, you may use double arrows >> instead.

5.2 Running jobs in your directory

When submitting a batch job, computation resources are shared between many users and hence

it is important to ensure that the jobs you have submitted are executed in your directory.

cd $PBS_O_WORKDIR

This executes the commands in the current working directory. Ensure that the command line

above is present in every batch script you write.

5.3 Exercise 3 (Part 1): Shell Script for Automated Batch Job

Exercise 3 is split into 2 parts. In this part, we will first learn the basics of writing a simple

script to automate the submission of our batch job. It will include a single run for our program.

After understanding the structure of a script, Part 2 will expand our script to include checks for

abnormal termination of jobs and subsequent error handling.

 Getting Started with NSCC Supercomputing on ASPIRE 1

32

 Write a Batch Script – batch_hello_world.pbs

Create a new script named ‘batch_hello_world.pbs’. Input the following code:

#!/bin/bash

Exercise 3 – batch_hello_world.pbs

#PBS -q normal

#PBS -P Personal

#PBS -l select=1:ncpus=10:mpiprocs=10

#PBS -l walltime=00:05:00

#PBS -j oe

#PBS -o JobOutput

module load openmpi

cd $PBS_O_WORKDIR

mpicc -o mpi_hello_world ./mpi_hello_world.c

mpirun -np 10 ./mpi_hello_world > output

 Understanding your Batch Script – batch_hello_world.pbs

#!/bin/bash tells the computer that this is a bash shell.

#PBS -q normal selects the “normal” queue.

#PBS -P Personal specifies that this is a “Personal” job.

#PBS -l select=1:ncpus=10:mpiprocs=10 and #PBS -l walltime=00:05:00 specifies that this job

is going to use 1 set of 10 CPU cores and be allocated a time of maximum 5 minutes.

#PBS -j oe combines the output and error files into a single file.

#PBS -o JobOutput specifies the name of the output file.

module load openmpi loads the OpenMPI module to allow for compilation and execution of

MPI jobs.

cd $PBS_O_WORKDIR changes the directory you are currently working on to the PBS

directory

mpicc -o mpi_hello_world ./mpi_hello_world.c compiles the program to mpi_hello_world.

mpirun -np 10 ./mpi_hello_world > output runs mpi_hello_world and redirects the output to

output.

 Getting Started with NSCC Supercomputing on ASPIRE 1

33

 Submit and monitor your Batch Job

After writing the script, you may submit to PBS Queue via the command:

qsub batch_hello_world.pbs

You will then receive a Job ID:

hpcuser@nscc04 hello $ qsub batch_hello_world.pbs

2123250.wlm01
Figure 5.1.1: Job ID from Job Script Submission

In this example, 2123250 is the Job ID for executing batch_hello_world.pbs.

You may use the following command to track your jobs in PBS Queue:

qstat

hpcuser@nscc04 hello $ qstat

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

2123250.wlm01 batch_hello_wor hpcuser 0 Q dev
Figure 5.1.2: Job Monitoring using qstat Command

 Check your Output

Once the job is done, find your output in the file named ‘output’ in your working directory.

Hello world from processor std1669, rank 1 out of 10 processors

Hello world from processor std1669, rank 2 out of 10 processors

Hello world from processor std1669, rank 4 out of 10 processors

Hello world from processor std1669, rank 6 out of 10 processors

Hello world from processor std1669, rank 9 out of 10 processors

Hello world from processor std1669, rank 0 out of 10 processors

Hello world from processor std1669, rank 3 out of 10 processors

Hello world from processor std1669, rank 5 out of 10 processors

Hello world from processor std1669, rank 7 out of 10 processors

Hello world from processor std1669, rank 8 out of 10 processors
Figure 5.2: Output from Hello World Job

5.4 Exercise 3 (Part 2): Shell Script for Automated Batch Job

In this part, we will learn how to check for abnormal job termination in our script and the

subsequent steps to successfully handling these errors.

 Abnormal Job Termination

We may want to be informed when our program terminates abnormally while executing a job

such that we are able to detect errors and account for it.

When a program or a command terminates, we will receive a return code from it. For example,

there is always ‘return 0’ at the end of the main function in a C program as shown below:

int main()

{

 Getting Started with NSCC Supercomputing on ASPIRE 1

34

 return 0;

}

As bash scripts are executed serially, each command will not be executed until the previous

part has finished. Hence, we can insert ‘echo $?’ between commands to obtain each command’s

exit code and detect any abnormal termination.

YOUR_PROGRAM

echo $?

 Write a Batch Script – batch_prime.pbs

When running a batch job, we would encounter the need to run a job multiple time. Hence, this

would require conditional execution and exception handling in order to run a batch job

smoothly, which we will be covering in the following sections.

Create a new script named ‘batch_prime.pbs’. Input the following code:

#!/bin/bash

Exercise 4 – batch_prime.pbs

#PBS -q normal

#PBS -l select=1:ncpus=24:mem=4G:mpiprocs=24:ompthreads=1

#PBS -l walltime=1:00:00

#PBS -m ae

#PBS -M youremail@gmail.com

#PBS -P Personal

#PBS -N prime

module load openmpi

cd $PBS_O_WORKDIR

mpirun -np 24 ./mpi_prime 64 > output_test

if [[$? -eq 0]]; then

 for i in $(seq 1 3); do

 mpirun -np 24 ./mpi_prime 64 >> output_test

 if [[$? -eq 1]]; then

 continue

 fi

 done

 else

 for i in 128 1024 8192 65536; do

 mpirun -np 24 ./mpi_prime $i >> output_test

 if [[$? -eq 1]]; then

 continue

 Getting Started with NSCC Supercomputing on ASPIRE 1

35

 fi

 done

fi

 Understanding your Batch Script – batch_prime.pbs

As discussed in Part 1, the PBS directives used in the script similarly applies here. We will

explain the additional directives used in this script.

#PBS -m ae indicates you would like an email alert when the job is aborted or has finished

execution.

#PBS -M youremail@gmail.com indicates your email address.

mpirun -np 24 ./mpi_prime 64 > output_test

 Runs the program with an input of 64.

 The single arrow after the input of 64 redirects the output to the output file named

output_test.

if [[$? -eq 0]]; then

This checks if each program run is executed successfully through the return code $? before

proceeding to the next run. If it returns 0, the run is successful. If it returns 1, the run is

unsuccessful.

for i in $(seq 1 3); do

 mpirun -np 24 ./mpi_prime 64 >> output_test

 if [[$? -eq 1]]; then

 continue

 fi

done

 Upon successful execution of the first run, the same job is run 3 more times and the

output is appended to the same output file.

 If any of the 3 runs is unsuccessful, it will simply proceed to the next run.

for i in 128 1024 8192 65536; do

 mpirun -np 24 ./mpi_prime $i >> output_test

 if [[$? -eq 1]]; then

 continue

 fi

done

 On the other hand, if the first run is unsuccessful, the job will be run with 24 MPI

processes with different inputs (128, 1024, 8192, 65536) each time.

 Again, if any of the runs is unsuccessful, it will simply proceed to the next run.

mailto:youremail@gmail.com

 Getting Started with NSCC Supercomputing on ASPIRE 1

36

 Check your Output

Once the job is done, you can find ‘output_test’ in your working directory.

You will notice that the program will either run with an input of 24 for 4 times, or with an input

of 24, 128, 1024, 8192 and 65535, but not both. This demonstrates exception handling of the

job such that your job will not stop running midway, which achieves the efficiency of a batch

job.

 Takeaways

From this exercise, we hope that you have a better understanding of how a batch script works

and the need to account for errors in your job run to prevent jobs from halting midway.

Ultimately, the goal of batch jobs is to reduce manual monitoring and increase the efficiency

of executing a program multiple time.

 Getting Started with NSCC Supercomputing on ASPIRE 1

37

 Summary

You should now be familiar with running jobs on the NSCC ASPIRE 1 both interactively,

batch and through the submission of scripts. With the basic understanding of the various MPI

commands needed to execute an MPI program as well as knowing the rationale and function

behind, you should be able to get started with writing more advanced MPI programs.

Lastly, we have introduced shell scripting to help in running of automated batch jobs and

ensuring that errors can be handled elegantly for a smooth job flow. Moving forward, you

should be able to develop scripts more specific to your program or your batch jobs such that it

can execute efficiently.

What you have learnt from this guide are just the rudimentary of MPI and PBS. You should

learn how to make your MPI programs more efficient so that they can run faster, and how to

make efficient use of PBS to schedule your jobs more optimally. Besides the many freely-

available online guides, NSCC also conducts regular workshops on advanced programming

(mostly MPI) and advanced job scheduling (PBS). You are strongly encouraged to attend these

workshops to learn how to use NSCC’s resources more efficiently.

 Getting Started with NSCC Supercomputing on ASPIRE 1

38

 References

[1] “NSCC - Software/Hardware Information”, National Supercomputing Centre

Singapore, [Online]. Available: https://help.nscc.sg/softwarehardware-information/

[Accessed 10 Dec 2020].

[2] “Basic Linux Tutorial”, National Supercomputing Centre Singapore, [Online].

Available: https://help.nscc.sg/wp-content/uploads/2016/03/BasicLinuxTutorial-

v0.1.pdf [Accessed 10 Dec 2020].

[3] NSCC, “Software/Hardware Information”, [Online]. Available:

https://help.nscc.sg/softwarehardware-information/ [Accessed 10 Dec 2020].

[4] "NSCC Help - User Guides”, National Supercomputing Centre Singapore, [Online].

Available: https://help.nscc.sg/user-guide/ [Accessed 10 Dec 2020].

[5] D. J. Barrett and R. E. Silverman, "Introduction to SSH”, O'Reilly & Associates,

[Online]. Available:

https://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm [Accessed 10

Dec 2020].

[6] "NSCC New User Starter Guide”, National Supercomputing Centre Singapore,

[Online]. Available: https://help.nscc.sg/wp-

content/uploads/2017/06/NSCC_New_User_Starter_Guide_v0.1.pdf [Accessed 10 Dec

2020].

[7] "User Enrollment Guide”, National Supercomputing Centre Singapore, 16 March 2016.

[Online]. Available: https://help.nscc.sg/wp-content/uploads/2016/03/NSCC-

UserEnrollmentGuide-v0.1.pdf [Accessed 10 Dec 2020].

[8] "UNIX / LINUX Tutorial”, [Online]. Available:

https://www.tutorialspoint.com/unix/index.htm [Accessed 10 Dec 2020].

[9] X. Delaruelle, "Environment Modules”, [Online]. Available:

http://modules.sourceforge.net/ [Accessed 10 Dec 2020].

[10] B. Barney, "Message Passing Interface (MPI)”, Lawrence Livermore National

Laboratory, 26 June 2020. [Online]. Available:

https://computing.llnl.gov/tutorials/mpi/#Getting_Started [Accessed 10 Dec 2020].

[11] B. Barney, "Introduction to Parallel Computing Tutorial”, Lawrence Livermore

National Laboratory, 26 June 2020. [Online]. Available:

https://computing.llnl.gov/tutorials/parallel_comp/ [Accessed 10 Dec 2020].

[12] W. Kendall, "MPI Hello World”, [Online]. Available:

https://mpitutorial.com/tutorials/mpi-hello-world/ [Accessed 10 Dec 2020].

[13] J. Brockmeier, "Vim 101: A Beginner’s Guide to Vim”, 20 November 2009. [Online].

Available: https://www.linux.com/training-tutorials/vim-101-beginners-guide-vim/

[Accessed 10 Dec 2020].

[14] "NSCC PBSPro Quickstart Guide”, National Supercomputing Centre Singapore,

[Online]. Available: https://help.nscc.sg/pbspro-quickstartguide/ [Accessed 10 Dec

2020].

https://help.nscc.sg/softwarehardware-information/
https://help.nscc.sg/wp-content/uploads/2016/03/BasicLinuxTutorial-v0.1.pdf
https://help.nscc.sg/wp-content/uploads/2016/03/BasicLinuxTutorial-v0.1.pdf
https://help.nscc.sg/softwarehardware-information/
https://help.nscc.sg/user-guide/
https://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm
https://help.nscc.sg/wp-content/uploads/2017/06/NSCC_New_User_Starter_Guide_v0.1.pdf
https://help.nscc.sg/wp-content/uploads/2017/06/NSCC_New_User_Starter_Guide_v0.1.pdf
https://help.nscc.sg/wp-content/uploads/2016/03/NSCC-UserEnrollmentGuide-v0.1.pdf
https://help.nscc.sg/wp-content/uploads/2016/03/NSCC-UserEnrollmentGuide-v0.1.pdf
https://www.tutorialspoint.com/unix/index.htm
http://modules.sourceforge.net/
https://computing.llnl.gov/tutorials/mpi/%23Getting_Started
https://computing.llnl.gov/tutorials/parallel_comp/
https://mpitutorial.com/tutorials/mpi-hello-world/
https://www.linux.com/training-tutorials/vim-101-beginners-guide-vim/
https://help.nscc.sg/pbspro-quickstartguide/

 Getting Started with NSCC Supercomputing on ASPIRE 1

39

[15] J. Burkardt, "Count Primes Using MPI”, Florida State University, 26 June 2020.

[Online]. Available:

https://people.sc.fsu.edu/~jburkardt/c_src/prime_mpi/prime_mpi.html [Accessed 10

Dec 2020].

[16] NSCC, "NSCC Supercomputing: A Beginner's Guide to Running AI Jobs”.

https://people.sc.fsu.edu/~jburkardt/c_src/prime_mpi/prime_mpi.html

